| dc.contributor.author |
Panja, Saikat |
en_US |
| dc.contributor.author |
SAINI, PRACHI |
en_US |
| dc.contributor.author |
SINGH, ANUPAM |
en_US |
| dc.date.accessioned |
2025-08-28T07:04:38Z |
|
| dc.date.available |
2025-08-28T07:04:38Z |
|
| dc.date.issued |
2025-07 |
en_US |
| dc.identifier.citation |
Communications in Algebra |
en_US |
| dc.identifier.issn |
0092-7872 |
en_US |
| dc.identifier.issn |
1532-4125 |
en_US |
| dc.identifier.uri |
https://doi.org/10.1080/00927872.2025.2531559 |
en_US |
| dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10366 |
|
| dc.description.abstract |
Let O(F) be the split octonion algebra over an algebraically closed field F. For positive integers k(1), k(2) >= 2, we study surjectivity of the map A(1)(x(1)(k)) + A(2)(y(2)(k)) is an element of O(F)< x, y > on O(F). For this, we use the orbit representatives of the G2(F)-action on O(F) x O(F) for the tuple (A(1), A(2)), and characterize the ones which give a surjective map. |
en_US |
| dc.language.iso |
en |
en_US |
| dc.publisher |
Taylor & Francis |
en_US |
| dc.subject |
G(2) |
en_US |
| dc.subject |
Polynomial maps |
en_US |
| dc.subject |
Split octonion algebra |
en_US |
| dc.subject |
2025-AUG-WEEK1 |
en_US |
| dc.subject |
TOC-AUG-2025 |
en_US |
| dc.subject |
2025 |
en_US |
| dc.title |
Polynomial maps with constants on split octonion algebras |
en_US |
| dc.type |
Article |
en_US |
| dc.contributor.department |
Dept. of Mathematics |
en_US |
| dc.identifier.sourcetitle |
Communications in Algebra |
en_US |
| dc.publication.originofpublisher |
Foreign |
en_US |