dc.contributor.author |
Dasgupta, Jyoti |
en_US |
dc.contributor.author |
Khan, Bivas |
en_US |
dc.contributor.author |
PODDAR, MAINAK |
en_US |
dc.date.accessioned |
2025-09-16T06:14:10Z |
|
dc.date.available |
2025-09-16T06:14:10Z |
|
dc.date.issued |
2026-01 |
en_US |
dc.identifier.citation |
Bulletin des Sciences Mathématiques, 206, 103715. |
en_US |
dc.identifier.issn |
0007-4497 |
en_US |
dc.identifier.issn |
1952-4773 |
en_US |
dc.identifier.uri |
https://doi.org/10.1016/j.bulsci.2025.103715 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10401 |
|
dc.description.abstract |
Let X be a normal projective variety over an algebraically closed field of characteristic zero. Let D be a reduced Weil divisor on X. Let G be a reductive linear algebraic group. We study logarithmic connections on a principal G-bundle over X, which are singular along D. We give necessary and sufficient conditions for the existence of such a connection in terms of connections on associated vector bundles when the logarithmic tangent sheaf of X is locally free. The existence of a logarithmic connection on a principal bundle over a projective toric variety, singular along the boundary divisor, is shown to be equivalent to the existence of a torus equivariant structure on the bundle. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Logarithmic connection |
en_US |
dc.subject |
Principal bundle |
en_US |
dc.subject |
Vector bundle |
en_US |
dc.subject |
Residue |
en_US |
dc.subject |
Normal variety |
en_US |
dc.subject |
Toric variety |
en_US |
dc.subject |
2025-SEP-WEEK1 |
en_US |
dc.subject |
TOC-SEP-2025 |
en_US |
dc.subject |
2025 |
en_US |
dc.title |
Logarithmic connections on principal bundles over normal varieties |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Bulletin des Sciences Mathématiques |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |