Digital Repository

Logarithmic connections on principal bundles over normal varieties

Show simple item record

dc.contributor.author Dasgupta, Jyoti en_US
dc.contributor.author Khan, Bivas en_US
dc.contributor.author PODDAR, MAINAK en_US
dc.date.accessioned 2025-09-16T06:14:10Z
dc.date.available 2025-09-16T06:14:10Z
dc.date.issued 2026-01 en_US
dc.identifier.citation Bulletin des Sciences Mathématiques, 206, 103715. en_US
dc.identifier.issn 0007-4497 en_US
dc.identifier.issn 1952-4773 en_US
dc.identifier.uri https://doi.org/10.1016/j.bulsci.2025.103715 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10401
dc.description.abstract Let X be a normal projective variety over an algebraically closed field of characteristic zero. Let D be a reduced Weil divisor on X. Let G be a reductive linear algebraic group. We study logarithmic connections on a principal G-bundle over X, which are singular along D. We give necessary and sufficient conditions for the existence of such a connection in terms of connections on associated vector bundles when the logarithmic tangent sheaf of X is locally free. The existence of a logarithmic connection on a principal bundle over a projective toric variety, singular along the boundary divisor, is shown to be equivalent to the existence of a torus equivariant structure on the bundle. en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Logarithmic connection en_US
dc.subject Principal bundle en_US
dc.subject Vector bundle en_US
dc.subject Residue en_US
dc.subject Normal variety en_US
dc.subject Toric variety en_US
dc.subject 2025-SEP-WEEK1 en_US
dc.subject TOC-SEP-2025 en_US
dc.subject 2025 en_US
dc.title Logarithmic connections on principal bundles over normal varieties en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Bulletin des Sciences Mathématiques en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account