dc.contributor.author |
Panja, Saikat |
en_US |
dc.contributor.author |
SAINI, PRACHI |
en_US |
dc.contributor.author |
SINGH, ANUPAM |
en_US |
dc.date.accessioned |
2025-09-16T06:14:10Z |
|
dc.date.available |
2025-09-16T06:14:10Z |
|
dc.date.issued |
2025-09 |
en_US |
dc.identifier.citation |
European Journal of Mathematics, 11, 62. |
en_US |
dc.identifier.issn |
2199-6768 |
en_US |
dc.identifier.issn |
2199-675X |
en_US |
dc.identifier.uri |
https://doi.org/10.1007/s40879-025-00853-6 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10403 |
|
dc.description.abstract |
For n⩾2, we consider the polynomial maps on Mn(K) given by evaluation of a polynomial f(X1,…,Xm) over the field K. We explore the image of the diagonal map given by in terms of the solution of certain equations over K. We show that when K=R and m=2, it is surjective except when n is odd, δ1δ2>0, and k1,k2 are both even (in that case, the image misses negative scalars), and the map is surjective for m⩾3. We further show that on Mn(H) (even with H coefficients) the diagonal map is surjective for m⩾2, where H is the algebra of Hamilton’s quaternions. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Polynomial maps |
en_US |
dc.subject |
Diagonal polynomial |
en_US |
dc.subject |
Matrix algebra |
en_US |
dc.subject |
Quaternions |
en_US |
dc.subject |
2025-SEP-WEEK1 |
en_US |
dc.subject |
TOC-SEP-2025 |
en_US |
dc.subject |
2025 |
en_US |
dc.title |
Surjectivity of polynomial maps on matrices |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
European Journal of Mathematics |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |