| dc.contributor.author |
MODASIYA, MITESH |
en_US |
| dc.contributor.author |
SEN, ABHROJYOTI |
en_US |
| dc.date.accessioned |
2025-09-30T04:45:04Z |
|
| dc.date.available |
2025-09-30T04:45:04Z |
|
| dc.date.issued |
2026-01 |
en_US |
| dc.identifier.citation |
Journal of Differential Equations, 452, 113780. |
en_US |
| dc.identifier.issn |
0022-0396 |
en_US |
| dc.identifier.issn |
1090-2732 |
en_US |
| dc.identifier.uri |
https://doi.org/10.1016/j.jde.2025.113780 |
en_US |
| dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10439 |
|
| dc.description.abstract |
We consider Dirichlet problems for fully nonlinear mixed local-nonlocal non-translation invariant operators. For a bounded C2 domain ohm subset of Rd, let u is an element of C(Rd) be a viscosity solution of such Dirichlet problem. We obtain global Lipschitz regularity and fine boundary regularity for u by constructing appropriate sub and supersolutions coupled with a Harnack type inequality. We apply these results to obtain H & ouml;lder regularity of Du up to the boundary. |
|
| dc.language.iso |
en |
en_US |
| dc.publisher |
Elsevier B.V. |
en_US |
| dc.subject |
Operators of mixed order |
en_US |
| dc.subject |
Viscosity solution |
en_US |
| dc.subject |
Fine boundary regularity |
en_US |
| dc.subject |
Fully nonlinear integro-PDEs |
en_US |
| dc.subject |
Harnack inequality |
en_US |
| dc.subject |
Gradient estimate |
en_US |
| dc.subject |
2025-SEP-WEEK5 |
en_US |
| dc.subject |
TOC-SEP-2025 |
en_US |
| dc.subject |
2026 |
en_US |
| dc.title |
Fine boundary regularity for fully nonlinear mixed local-nonlocal problems |
en_US |
| dc.type |
Article |
en_US |
| dc.contributor.department |
Dept. of Mathematics |
en_US |
| dc.identifier.sourcetitle |
Journal of Differential Equations |
en_US |
| dc.publication.originofpublisher |
Foreign |
en_US |