Digital Repository

Fine boundary regularity for fully nonlinear mixed local-nonlocal problems

Show simple item record

dc.contributor.author MODASIYA, MITESH en_US
dc.contributor.author SEN, ABHROJYOTI en_US
dc.date.accessioned 2025-09-30T04:45:04Z
dc.date.available 2025-09-30T04:45:04Z
dc.date.issued 2026-01 en_US
dc.identifier.citation Journal of Differential Equations, 452, 113780. en_US
dc.identifier.issn 0022-0396 en_US
dc.identifier.issn 1090-2732 en_US
dc.identifier.uri https://doi.org/10.1016/j.jde.2025.113780 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10439
dc.description.abstract We consider Dirichlet problems for fully nonlinear mixed local-nonlocal non-translation invariant operators. For a bounded C2 domain ohm subset of Rd, let u is an element of C(Rd) be a viscosity solution of such Dirichlet problem. We obtain global Lipschitz regularity and fine boundary regularity for u by constructing appropriate sub and supersolutions coupled with a Harnack type inequality. We apply these results to obtain H & ouml;lder regularity of Du up to the boundary.
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Operators of mixed order en_US
dc.subject Viscosity solution en_US
dc.subject Fine boundary regularity en_US
dc.subject Fully nonlinear integro-PDEs en_US
dc.subject Harnack inequality en_US
dc.subject Gradient estimate en_US
dc.subject 2025-SEP-WEEK5 en_US
dc.subject TOC-SEP-2025 en_US
dc.subject 2026 en_US
dc.title Fine boundary regularity for fully nonlinear mixed local-nonlocal problems en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Journal of Differential Equations en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account