Digital Repository

Molecular-Scale Geometry Switching for Proton-Driven Macroscopic Actuation

Show simple item record

dc.contributor.author PARMAR, MUSKAN en_US
dc.contributor.author DARGILY, NEETHU CHRISTUDAS en_US
dc.contributor.author NAYAK, BHOJKUMAR en_US
dc.contributor.author PANDEY, VINAY en_US
dc.contributor.author Kotresh, Harish Makri Nimbegondi en_US
dc.contributor.author THOTIYL, MUSTHAFA OTTAKAM en_US
dc.date.accessioned 2025-10-17T06:40:07Z
dc.date.available 2025-10-17T06:40:07Z
dc.date.issued 2025-10 en_US
dc.identifier.citation Advanced Functional Materials en_US
dc.identifier.issn 1616-3028 en_US
dc.identifier.issn 1616-301X en_US
dc.identifier.uri https://doi.org/10.1002/adfm.202515664 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10453
dc.description.abstract A conceptual framework for mechanical actuation is presented, rooted in molecular-level structural switching via ligand isomerization around a central metal ion. During the α to β ligand geometric switching, intramolecular hydrogen bonding, a key attractive interaction, is dismantled, dramatically enhancing proton charge localization and its spatial organization. This structural realignment in the β isomer results in a threefold increase in anion population at the electric double layer, unleashing a fundamentally unique proton-driven mechanical response. Unlike conventional methods, this mechanism offers an unexplored dimension, translating precise molecular reconfigurations into macroscopic motion. This work highlights how molecular-level structural switching can serve as a design principle for creating highly responsive, adaptable soft actuators, paving the way for advances in soft robotics, molecular machinery, and dynamic materials. en_US
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.subject Electric double layer en_US
dc.subject Ligand isomerization en_US
dc.subject Mechanical actuation en_US
dc.subject Organometallic complexes en_US
dc.subject Proton charge assembly en_US
dc.subject 2025-OCT-WEEK3 en_US
dc.subject TOC-OCT-2025 en_US
dc.subject 2025 en_US
dc.title Molecular-Scale Geometry Switching for Proton-Driven Macroscopic Actuation en_US
dc.type Article en_US
dc.contributor.department Dept. of Chemistry en_US
dc.identifier.sourcetitle Advanced Functional Materials en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account