dc.contributor.author |
PARMAR, MUSKAN |
en_US |
dc.contributor.author |
DARGILY, NEETHU CHRISTUDAS |
en_US |
dc.contributor.author |
NAYAK, BHOJKUMAR |
en_US |
dc.contributor.author |
PANDEY, VINAY |
en_US |
dc.contributor.author |
Kotresh, Harish Makri Nimbegondi |
en_US |
dc.contributor.author |
THOTIYL, MUSTHAFA OTTAKAM |
en_US |
dc.date.accessioned |
2025-10-17T06:40:07Z |
|
dc.date.available |
2025-10-17T06:40:07Z |
|
dc.date.issued |
2025-10 |
en_US |
dc.identifier.citation |
Advanced Functional Materials |
en_US |
dc.identifier.issn |
1616-3028 |
en_US |
dc.identifier.issn |
1616-301X |
en_US |
dc.identifier.uri |
https://doi.org/10.1002/adfm.202515664 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10453 |
|
dc.description.abstract |
A conceptual framework for mechanical actuation is presented, rooted in molecular-level structural switching via ligand isomerization around a central metal ion. During the α to β ligand geometric switching, intramolecular hydrogen bonding, a key attractive interaction, is dismantled, dramatically enhancing proton charge localization and its spatial organization. This structural realignment in the β isomer results in a threefold increase in anion population at the electric double layer, unleashing a fundamentally unique proton-driven mechanical response. Unlike conventional methods, this mechanism offers an unexplored dimension, translating precise molecular reconfigurations into macroscopic motion. This work highlights how molecular-level structural switching can serve as a design principle for creating highly responsive, adaptable soft actuators, paving the way for advances in soft robotics, molecular machinery, and dynamic materials. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Wiley |
en_US |
dc.subject |
Electric double layer |
en_US |
dc.subject |
Ligand isomerization |
en_US |
dc.subject |
Mechanical actuation |
en_US |
dc.subject |
Organometallic complexes |
en_US |
dc.subject |
Proton charge assembly |
en_US |
dc.subject |
2025-OCT-WEEK3 |
en_US |
dc.subject |
TOC-OCT-2025 |
en_US |
dc.subject |
2025 |
en_US |
dc.title |
Molecular-Scale Geometry Switching for Proton-Driven Macroscopic Actuation |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Chemistry |
en_US |
dc.identifier.sourcetitle |
Advanced Functional Materials |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |