dc.contributor.author |
CHOUDHARY, AAKASH |
en_US |
dc.contributor.author |
Sharma, Jyotsna |
en_US |
dc.date.accessioned |
2025-10-17T06:40:08Z |
|
dc.date.available |
2025-10-17T06:40:08Z |
|
dc.date.issued |
2025-09 |
en_US |
dc.identifier.citation |
Communications in Algebra |
en_US |
dc.identifier.issn |
0092-7872 |
en_US |
dc.identifier.issn |
1532-4125 |
en_US |
dc.identifier.uri |
https://doi.org/10.1080/00927872.2025.2561951 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10460 |
|
dc.description.abstract |
Let q be a prime power and n be a positive integer. Let Fqn be the degree n field extension over the field Fq. In this paper, we study the existence of r-primitive elements in an arithmetic progression of length m >= 2. We find a condition for the existence of an element alpha is an element of Fqnx for a given m >= 2 and gamma is an element of Fqnx such that, for 1 <= i <= m, alpha+(i-1)gamma is an element of Fqnx is ri-primitive with prescribed norm ai is an element of Fqx. Further, we improve this sufficient condition when q equivalent to 3 (mod4) and the positive integer n is odd. Also, for n >= 7,m=2 we demonstrate that there are only 41 possible exceptions, and at most 2 exceptions when q equivalent to 3 (mod4) and n is odd. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Taylor & Francis |
en_US |
dc.subject |
Character |
en_US |
dc.subject |
Finite field |
en_US |
dc.subject |
Norm |
en_US |
dc.subject |
Primitive element |
en_US |
dc.subject |
2025-OCT-WEEK3 |
en_US |
dc.subject |
TOC-OCT-2025 |
en_US |
dc.subject |
2025 |
en_US |
dc.title |
Arithmetic progressions of some special elements in finite fields |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Communications in Algebra |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |