| dc.contributor.author |
DATTA, SUTIRTHA |
en_US |
| dc.contributor.author |
DAUNDKAR, NAVNATH |
en_US |
| dc.contributor.author |
SARKAR, ABHISHEK |
en_US |
| dc.date.accessioned |
2025-10-17T06:41:16Z |
|
| dc.date.available |
2025-10-17T06:41:16Z |
|
| dc.date.issued |
2025-12 |
en_US |
| dc.identifier.citation |
Topology and its Applications, 375, 109575. |
en_US |
| dc.identifier.issn |
0166-8641 |
en_US |
| dc.identifier.issn |
1879-3207 |
en_US |
| dc.identifier.uri |
https://doi.org/10.1016/j.topol.2025.109575 |
en_US |
| dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10477 |
|
| dc.description.abstract |
We study the higher (sequential) topological complexity, a numerical homotopy invariant for the planar polygon spaces. For these spaces with a small genetic codes and dimension m, Davis showed that their topological complexity is either 2m or 2m + 1. We extend these bounds to the setting of higher topological complexity. In particular, when m is power of 2, we show that the k-th higher topological complexity of these spaces is either km or km + 1. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. |
en_US |
| dc.language.iso |
en |
en_US |
| dc.publisher |
Elsevier B.V. |
en_US |
| dc.subject |
LS category |
en_US |
| dc.subject |
Higher topological complexity |
en_US |
| dc.subject |
Planar polygon spaces |
en_US |
| dc.subject |
2025-OCT-WEEK1 |
en_US |
| dc.subject |
TOC-OCT-2025 |
en_US |
| dc.subject |
2025 |
en_US |
| dc.title |
Higher topological complexity of planar polygon spaces having small genetic codes |
en_US |
| dc.type |
Article |
en_US |
| dc.contributor.department |
Dept. of Mathematics |
en_US |
| dc.identifier.sourcetitle |
Topology and its Applications |
en_US |
| dc.publication.originofpublisher |
Foreign |
en_US |