| dc.contributor.author |
Malik, Neha |
en_US |
| dc.contributor.author |
SPALLONE, STEVEN |
en_US |
| dc.date.accessioned |
2026-01-30T06:34:33Z |
|
| dc.date.available |
2026-01-30T06:34:33Z |
|
| dc.date.issued |
2026-01 |
en_US |
| dc.identifier.citation |
International Journal of Mathematics |
en_US |
| dc.identifier.issn |
0129-167X |
en_US |
| dc.identifier.issn |
1793-6519 |
en_US |
| dc.identifier.uri |
https://doi.org/10.1142/S0129167X26500199 |
en_US |
| dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10650 |
|
| dc.description.abstract |
Let 𝑞 be an odd prime power, and 𝐺=Sp(2𝑛,𝑞) the finite symplectic group. We give an expression for the total Stiefel–Whitney Classes (SWCs) for orthogonal representations 𝜋 of 𝐺, in terms of character values of 𝜋 at elements of order 2. We give “universal formulas” for the fourth and eighth SWCs. For 𝑛=2, we compute the subring of the mod 2 cohomology generated by the SWCs 𝑤𝑘(𝜋). |
en_US |
| dc.language.iso |
en |
en_US |
| dc.publisher |
World Scientific |
en_US |
| dc.subject |
Stiefel–Whitney Classes |
en_US |
| dc.subject |
Symplectic groups |
en_US |
| dc.subject |
Finite groups of Lie type |
en_US |
| dc.subject |
Weil representations |
en_US |
| dc.subject |
2026-JAN-WEEK1 |
en_US |
| dc.subject |
TOC-JAN-2026 |
en_US |
| dc.subject |
2026 |
en_US |
| dc.title |
Stiefel–Whitney Classes for finite symplectic groups |
en_US |
| dc.type |
Article |
en_US |
| dc.contributor.department |
Dept. of Mathematics |
en_US |
| dc.identifier.sourcetitle |
International Journal of Mathematics |
en_US |
| dc.publication.originofpublisher |
Foreign |
en_US |