dc.contributor.author |
Buss, Alcides |
en_US |
dc.contributor.author |
HOLKAR, ROHIT DILIP |
en_US |
dc.contributor.author |
Meyer, Ralf |
en_US |
dc.date.accessioned |
2018-08-16T05:32:25Z |
|
dc.date.available |
2018-08-16T05:32:25Z |
|
dc.date.issued |
2018-08 |
en_US |
dc.identifier.citation |
Proceedings of the London Mathematical Society, 117(2),345-375. |
en_US |
dc.identifier.issn |
1460-244X |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1137 |
|
dc.identifier.uri |
https://doi.org/10.1112/plms.12131 |
en_US |
dc.description.abstract |
We describe representations of groupoid C-algebras on Hilbert modules over arbitrary C-algebras by a universal property. For Hilbert space representations, our universal property is equivalent to Renault's integration-disintegration theorem. For a locally compact group, it is related to the automatic continuity of measurable group representations. It implies known descriptions of groupoid C-algebras as crossed products for etale groupoids and transformation groupoids of group actions on spaces. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Wiley |
en_US |
dc.subject |
Inverse-Semigroups |
en_US |
dc.subject |
TOC-AUG-2018 |
en_US |
dc.subject |
2018 |
en_US |
dc.title |
A universal property for groupoid C-*-algebras. |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Proceedings of the London Mathematical Society |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |