dc.contributor.author |
AMBIKA, G. |
en_US |
dc.contributor.author |
Ambika, K. |
en_US |
dc.date.accessioned |
2018-10-24T05:18:07Z |
|
dc.date.available |
2018-10-24T05:18:07Z |
|
dc.date.issued |
2006-10 |
en_US |
dc.identifier.citation |
Physica Scripta, 74(5). |
en_US |
dc.identifier.issn |
0031-8949 |
en_US |
dc.identifier.issn |
1402-4896 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1319 |
|
dc.identifier.uri |
https://doi.org/10.1088/0031-8949/74/5/003 |
en_US |
dc.description.abstract |
In this study, we consider two models of two dimensional (2D) discrete systems subjected to three different types of coupling and analyse systematically the performance of each in realizing synchronized states. We find that linear coupling (CS1) effectively introduces control of chaos along with synchronization, while synchronized chaotic states are possible with an additive parametric coupling (CS3) scheme both being equally relevant for specific applications. The basin leading to synchronization in the initial value plane and the choice of parameter values for synchronization in the parameter plane are isolated in each case. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
IOP Publishing |
en_US |
dc.subject |
Synchronization schemes |
en_US |
dc.subject |
Dimensional discrete |
en_US |
dc.subject |
2006 |
en_US |
dc.title |
Synchronization schemes for two dimensional discrete systems |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Physics |
en_US |
dc.identifier.sourcetitle |
Physica Scripta |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |