Digital Repository

The Eisenstein cycles as modular symbols

Show simple item record

dc.contributor.author BANERJEE, DEBARGHA en_US
dc.contributor.author Merel, Loic en_US
dc.date.accessioned 2018-10-25T03:37:30Z
dc.date.available 2018-10-25T03:37:30Z
dc.date.issued 2018-10 en_US
dc.identifier.citation Journal of the London Mathematical Society,98(2), 329-348. en_US
dc.identifier.issn 1469-7750 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1322
dc.identifier.uri https://doi.org/10.1112/jlms.12136 en_US
dc.description.abstract For any odd integer N, we explicitly write down the Eisenstein cycles in the first homology group of modular curves of level N as linear combinations of Manin symbols. These cycles are, by definition, those over which every integral of holomorphic differential forms vanish. Our result can be seen as an explicit version of the Manin-Drinfeld theorem. Our method is to characterize such Eisenstein cycles as eigenvectors for the Hecke operators. We make crucial use of expressions of Hecke actions on modular symbols and on auxiliary level 2 structures. en_US
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.subject Hecke Operators en_US
dc.subject Elements en_US
dc.subject 2018 en_US
dc.title The Eisenstein cycles as modular symbols en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Journal of the London Mathematical Society en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account