Abstract:
The Pascal triangle is a geometric representation of binomial coefficients in triangular form. We utilize this formalism to deterministically arrange silver nanocylinders of different sizes (30, 60, and 90nm) on a triangle and numerically study their near-field optical properties. We show that near-field intensities at specific points on this triangle depend on the wavelength and angle of incidence. From the wavelength-dependent studies at various junctions of nanocylinders, we obtain maximum near-field intensity at 350 and 380nm. By varying the angle of incidence of the TM-polarized plane wave, we find systematic variation in the near-field intensity at different junctions of the geometry. Our study will lead to insights in designing controllable electromagnetic hot spots for chip-based plasmonic devices.