Digital Repository

Efficient Access to Enantiopure γ4‐Amino Acids with Proteinogenic Side‐Chains and Structural Investigation of γ4‐Asn and γ4‐Ser in Hybrid Peptide Helices

Show simple item record

dc.contributor.author JADHAV, SANDIP V. en_US
dc.contributor.author Misra, Rajkumar en_US
dc.contributor.author Singh, Sumeet K. en_US
dc.contributor.author GOPI, HOSAHUDYA N. en_US
dc.date.accessioned 2019-02-14T05:00:43Z
dc.date.available 2019-02-14T05:00:43Z
dc.date.issued 2013-11 en_US
dc.identifier.citation Chemistry - A European Journal, 19(48), en_US
dc.identifier.issn 0947-6539, en_US
dc.identifier.issn 1521-3765 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1601
dc.identifier.uri https://doi.org/10.1002/chem.201302732 en_US
dc.description.abstract Hybrid peptides composed of α‐ and β‐amino acids have recently emerged as new class of peptide foldamers. Comparatively, γ‐ and hybrid γ‐peptides composed of γ4‐amino acids are less studied than their β‐counterparts. However, recent investigations reveal that γ4‐amino acids have a higher propensity to fold into ordered helical structures. As amino acid side‐chain functional groups play a crucial role in the biological context, the objective of this study was to investigate efficient synthesis of γ4‐residues with functional proteinogenic side‐chains and their structural analysis in hybrid‐peptide sequences. Here, the efficient and enantiopure synthesis of various N‐ and C‐terminal free‐γ4‐residues, starting from the benzyl esters (COOBzl) of N‐Cbz‐protected (E)‐α,β‐unsaturated γ‐amino acids through multiple hydrogenolysis and double‐bond reduction in a single‐pot catalytic hydrogenation is reported. The crystal conformations of eight unprotected γ4‐amino acids (γ4‐Val, γ4‐Leu, γ4‐Ile, γ4‐Thr(OtBu), γ4‐Tyr, γ4‐Asp(OtBu), γ4‐Glu(OtBu), and γ‐Aib) reveals that these amino acids adopted a helix favoring gauche conformations along the central CγCβ bond. To study the behavior of γ4‐residues with functional side chains in peptide sequences, two short hybrid γ‐peptides P1 (Ac‐Aib‐γ4‐Asn‐Aib‐γ4‐Leu‐Aib‐γ4‐Leu‐CONH2) and P2 (Ac‐Aib‐γ4‐Ser‐Aib‐γ4‐Val‐Aib‐γ4‐Val‐CONH2) were designed, synthesized on solid phase, and their 12‐helical conformation in single crystals were studied. Remarkably, the γ4‐Asn residue in P1 facilitates the tetrameric helical aggregations through interhelical H bonding between the side‐chain amide groups. Furthermore, the hydroxyl side‐chain of γ4‐Ser in P2 is involved in the interhelical H bonding with the backbone amide group. In addition, the analysis of 87 γ4‐residues in peptide single‐crystals reveal that the γ4‐residues in 12‐helices are more ordered as compared with the 10/12‐ and 12/14‐helices. en_US
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.subject Enantiopure en_US
dc.subject Amino Acids en_US
dc.subject 4 Asn en_US
dc.subject Hybrid Peptide Helices en_US
dc.subject Homooligomers en_US
dc.subject Stereochemically en_US
dc.subject Crystal conformations en_US
dc.subject 2013 en_US
dc.title Efficient Access to Enantiopure γ4‐Amino Acids with Proteinogenic Side‐Chains and Structural Investigation of γ4‐Asn and γ4‐Ser in Hybrid Peptide Helices en_US
dc.type Article en_US
dc.contributor.department Dept. of Chemistry en_US
dc.identifier.sourcetitle Chemistry - A European Journal en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account