dc.contributor.author |
Sree Ranjani, P. |
en_US |
dc.contributor.author |
Kapoor, A. K. |
en_US |
dc.contributor.author |
KHARE, AVINASH |
en_US |
dc.contributor.author |
Panigrahi, P. K. |
en_US |
dc.date.accessioned |
2019-02-14T05:02:59Z |
|
dc.date.available |
2019-02-14T05:02:59Z |
|
dc.date.issued |
2013-08 |
en_US |
dc.identifier.citation |
Pramana, 81(2), 237-246. |
en_US |
dc.identifier.issn |
0304-4289 |
en_US |
dc.identifier.issn |
0973-7111 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1689 |
|
dc.identifier.uri |
https://doi.org/10.1007/s12043-013-0558-8 |
en_US |
dc.description.abstract |
Quantum Hamilton–Jacobi formalism is used to give a proof for Gozzi’s criterion, which states that for eigenstates of the supersymmetric partners, corresponding to the same energy, the difference in the number of nodes is equal to one when supersymmetry (SUSY) is unbroken and is zero when SUSY is broken. We also show that this proof is also applicable to the case, where isospectral deformation is involved. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Indian Academy of Sciences |
en_US |
dc.subject |
Quantum Hamilton-Jacobi formalism |
en_US |
dc.subject |
Supersymmetry |
en_US |
dc.subject |
Gozzis criterion Exactly solvable models |
en_US |
dc.subject |
Bound states |
en_US |
dc.subject |
2013 |
en_US |
dc.title |
A quantum Hamilton Jacobi proof of the nodal structure of the wave functions of supersymmetric partner potentials |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Physics |
en_US |
dc.identifier.sourcetitle |
Pramana |
en_US |
dc.publication.originofpublisher |
Indian |
en_US |