Digital Repository

On local Galois representations associated to ordinary Hilbert modular forms

Show simple item record

dc.contributor.author BALASUBRAMANYAM, BASKAR en_US
dc.contributor.author Ghate, Eknath en_US
dc.contributor.author Vatsal, Vinayak en_US
dc.date.accessioned 2019-02-14T05:46:11Z
dc.date.available 2019-02-14T05:46:11Z
dc.date.issued 2013-11 en_US
dc.identifier.citation Manuscripta Mathematica,142(3-4), 513-524. en_US
dc.identifier.issn 0025-2611 en_US
dc.identifier.issn 1432-1785 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1742
dc.identifier.uri https://doi.org/10.1007/s00229-013-0614-1 en_US
dc.description.abstract Let F be a totally real field and p be an odd prime which splits completely in F. We show that a generic p-ordinary non-CM primitive Hilbert modular cuspidal eigenform over F of parallel weight two or more must have a locally non-split p-adic Galois representation, at at least one of the primes of F lying above p. This is proved under some technical assumptions on the global residual Galois representation. We also indicate how to extend our results to nearly ordinary families and forms of non-parallel weight. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Galois representations en_US
dc.subject Ordinary Hilbert modular forms en_US
dc.subject CM primitive en_US
dc.subject Technical assumptions en_US
dc.subject 2013 en_US
dc.title On local Galois representations associated to ordinary Hilbert modular forms en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Manuscripta Mathematica en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account