dc.contributor.author |
MISHRA, RAMA |
en_US |
dc.date.accessioned |
2019-02-14T05:46:12Z |
|
dc.date.available |
2019-02-14T05:46:12Z |
|
dc.date.issued |
2013-06 |
en_US |
dc.identifier.citation |
Kyungpook Mathematical Journal, 54(2), 271-292. |
en_US |
dc.identifier.issn |
1225-6951 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1754 |
|
dc.identifier.uri |
https://doi.org/10.5666/KMJ.2014.54.2.271 |
en_US |
dc.description.abstract |
We introduce a new method to transform a knot diagram into a diagram of an unknot using a polynomial representation of the knot. Here the unknotting sequence of a knot diagram with least number of crossing changes can be realized by a family of polynomial maps. The number of singular knots in this family is defined to be the singularity index of the diagram. We show that the singularity index of a diagram is always less than or equal to its unknotting number. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Department of Mathematics, Kyungpook National University |
en_US |
dc.subject |
Polynomials |
en_US |
dc.subject |
Mathematical singularities |
en_US |
dc.subject |
Transformations (mathematics) |
en_US |
dc.subject |
Mathematical sequences |
en_US |
dc.subject |
Double point |
en_US |
dc.subject |
Immersion |
en_US |
dc.subject |
Unknotting number |
en_US |
dc.subject |
2013 |
en_US |
dc.title |
Polynomial Unknotting and Singularity Index. |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Kyungpook Mathematical Journal |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |