dc.contributor.author |
BASU, RABEYA |
en_US |
dc.date.accessioned |
2019-02-14T05:52:33Z |
|
dc.date.available |
2019-02-14T05:52:33Z |
|
dc.date.issued |
2011-07 |
en_US |
dc.identifier.citation |
Journal of Algebra and Its Applications, 10(4), 793-799. |
en_US |
dc.identifier.issn |
0219-4988 |
en_US |
dc.identifier.issn |
1793-6829 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1848 |
|
dc.identifier.uri |
https://doi.org/10.1142/S0219498811004951 |
en_US |
dc.description.abstract |
When R is a commutative ring with identity, and if k ∈ ℕ, with kR = R, then it was shown in [C. Weibel, Mayer–Vietoris Sequence and Module Structure on NK0, Lecture Notes in Mathematics, Vol. 854 (Springer, 1981), pp. 466–498] that SK1(R[X]) has no k-torsion. We prove this result for any associative ring R with identity in which kR = R. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
World Scientific Publishing |
en_US |
dc.subject |
Linear group |
en_US |
dc.subject |
K1 |
en_US |
dc.subject |
NK1 |
en_US |
dc.subject |
SK1 |
en_US |
dc.subject |
torsion |
en_US |
dc.subject |
Witt vectors |
en_US |
dc.subject |
2011 |
en_US |
dc.title |
Absence of torsion for NK_1(R) over associative rings |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Algebra and Its Applications |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |