dc.contributor.author |
BASU, RABEYA |
en_US |
dc.contributor.author |
Rao, Ravi A. |
en_US |
dc.contributor.author |
Chattopadhyay, Pratyusha |
en_US |
dc.date.accessioned |
2019-02-14T05:52:33Z |
|
dc.date.available |
2019-02-14T05:52:33Z |
|
dc.date.issued |
2011-01 |
en_US |
dc.identifier.citation |
Proceedings of the American Mathematical Society, 139, 2317-2325. |
en_US |
dc.identifier.issn |
1088-6826 |
en_US |
dc.identifier.issn |
Feb-39 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1849 |
|
dc.identifier.uri |
https://doi.org/10.1090/S0002-9939-2010-10654-8 |
en_US |
dc.description.abstract |
It is shown that if $ A$ is an affine algebra of odd dimension $ d$ over an infinite field of cohomological dimension at most one, with $ (d +1)! A = A$, and with $ 4\vert(d -1)$, then Um $ _{d+1}(A) = e_1\textrm{Sp}_{d+1}(A)$. As a consequence it is shown that if $ A$ is a non-singular affine algebra of dimension $ d$ over an infinite field of cohomological dimension at most one, and $ d!A = A$, and $ 4\vert d$, then $ \textrm{Sp}_d(A) \cap \textrm{ESp}_{d+2}(A) = \textrm{ESp}_d(A)$. This result is a partial analogue for even-dimensional algebras of the one obtained by Basu and Rao for odd-dimensional algebras earlier. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
American Mathematical Society |
en_US |
dc.subject |
Symplectic |
en_US |
dc.subject |
Injective stability |
en_US |
dc.subject |
Cohomological dimension |
en_US |
dc.subject |
2011 |
en_US |
dc.title |
Some remarks on symplectic injective stability |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Proceedings of the American Mathematical Society |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |