Digital Repository

Some remarks on symplectic injective stability

Show simple item record

dc.contributor.author BASU, RABEYA en_US
dc.contributor.author Rao, Ravi A. en_US
dc.contributor.author Chattopadhyay, Pratyusha en_US
dc.date.accessioned 2019-02-14T05:52:33Z
dc.date.available 2019-02-14T05:52:33Z
dc.date.issued 2011-01 en_US
dc.identifier.citation Proceedings of the American Mathematical Society, 139, 2317-2325. en_US
dc.identifier.issn 1088-6826 en_US
dc.identifier.issn Feb-39 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1849
dc.identifier.uri https://doi.org/10.1090/S0002-9939-2010-10654-8 en_US
dc.description.abstract It is shown that if $ A$ is an affine algebra of odd dimension $ d$ over an infinite field of cohomological dimension at most one, with $ (d +1)! A = A$, and with $ 4\vert(d -1)$, then Um $ _{d+1}(A) = e_1\textrm{Sp}_{d+1}(A)$. As a consequence it is shown that if $ A$ is a non-singular affine algebra of dimension $ d$ over an infinite field of cohomological dimension at most one, and $ d!A = A$, and $ 4\vert d$, then $ \textrm{Sp}_d(A) \cap \textrm{ESp}_{d+2}(A) = \textrm{ESp}_d(A)$. This result is a partial analogue for even-dimensional algebras of the one obtained by Basu and Rao for odd-dimensional algebras earlier. en_US
dc.language.iso en en_US
dc.publisher American Mathematical Society en_US
dc.subject Symplectic en_US
dc.subject Injective stability en_US
dc.subject Cohomological dimension en_US
dc.subject 2011 en_US
dc.title Some remarks on symplectic injective stability en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Proceedings of the American Mathematical Society en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account