Abstract:
A wide spectrum of extreme events ranging from traffic jams to floods take place on networks. Motivated by these, we employ a random walk model for transport and obtain analytical and numerical results for the extreme events on networks. They reveal an unforeseen, and yet a robust, feature: small degree nodes of a network are more likely to encounter extreme events than the hubs. Further, we also study the recurrence time distribution and scaling of the probabilities for extreme events. These results suggest a revision of design principles and can be used as an input for designing the nodes of a network so as to smoothly handle extreme events.