dc.contributor.author |
CHORWADWALA, ANISA M. H. |
en_US |
dc.contributor.author |
Mahadevan, Rajesh |
en_US |
dc.contributor.author |
Toledo, Francisco |
en_US |
dc.date.accessioned |
2019-02-25T09:05:30Z |
|
dc.date.available |
2019-02-25T09:05:30Z |
|
dc.date.issued |
2014-10 |
en_US |
dc.identifier.citation |
ESAIM: Control, Optimisation and Calculus of Variations, 21(1), 60 - 72. |
en_US |
dc.identifier.issn |
1292-8119 |
en_US |
dc.identifier.issn |
1262-3377 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2081 |
|
dc.identifier.uri |
https://doi.org/10.1051/cocv/2014017 |
en_US |
dc.description.abstract |
A famous conjecture made by Lord Rayleigh is the following: “The first eigenvalue of the Laplacian on an open domain of given measure with Dirichlet boundary conditions is minimum when the domain is a ball and only when it is a ball”. This conjecture was proved simultaneously and independently by Faber [G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169–172] and Krahn [E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97–100.]. We shall deal with the p-Laplacian version of this theorem. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
EDP Sciences |
en_US |
dc.subject |
Symmetry |
en_US |
dc.subject |
Moving plane method |
en_US |
dc.subject |
Comparison Principles |
en_US |
dc.subject |
Boundary point lemma |
en_US |
dc.subject |
2014 |
en_US |
dc.title |
On the Faber–Krahn inequality for the Dirichlet p-Laplacian |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
ESAIM: Control |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |