dc.contributor.author |
Gates, Zachary |
en_US |
dc.contributor.author |
SINGH, ANUPAM KUMAR |
en_US |
dc.contributor.author |
Vinroot, C. Ryan |
en_US |
dc.date.accessioned |
2019-02-25T09:05:30Z |
|
dc.date.available |
2019-02-25T09:05:30Z |
|
dc.date.issued |
2014-08 |
en_US |
dc.identifier.citation |
Journal of Group Theory , 17(4), 589-617. |
en_US |
dc.identifier.issn |
1433-5883 |
en_US |
dc.identifier.issn |
1435-4446 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2088 |
|
dc.identifier.uri |
https://doi.org/10.1515/jgt-2014-0010 |
en_US |
dc.description.abstract |
We classify all strongly real conjugacy classes of the finite unitary group U(n,𝔽q) when q is odd. In particular, we show that g ∈ U(n,𝔽q) is strongly real if and only if g is an element of some embedded orthogonal group O±(n,𝔽q). Equivalently, g is strongly real in U(n,𝔽q) if and only if g is real and every elementary divisor of g of the form (t ± 1)2m has even multiplicity. We apply this to obtain partial results on strongly real classes in the finite symplectic group Sp(2n,𝔽q), q odd, and a generating function for the number of strongly real classes in U(n,𝔽q), q odd, and we also give partial results on strongly real classes in U(n,𝔽q) when q is even. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
De Gruyter |
en_US |
dc.subject |
Strongly real classes |
en_US |
dc.subject |
Unitary groups |
en_US |
dc.subject |
Odd characteristic |
en_US |
dc.subject |
Real classes |
en_US |
dc.subject |
Strongly real classes |
en_US |
dc.subject |
2014 |
en_US |
dc.title |
Strongly real classes in finite unitary groups of odd characteristic |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Group Theory |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |