Abstract:
We study anomalous charged fluid in 2n-dimensions (n ≥ 2) up to sub-leading derivative order. Only the effect of gauge anomaly is important at this order. Using the Euclidean partition function formalism, we find the constraints on different sub-leading order transport coefficients appearing in parity-even and odd sectors of the fluid. We introduce a new mechanism to count different fluid data at arbitrary derivative order. We show that only the knowledge of independent scalar-data is sufficient to find the constraints. In appendix we further extend this analysis to obtain fluid data at sub-sub-leading order (where both gauge and gravitational anomaly contribute) for parity-odd fluid.