Abstract:
We study the Rényi and entanglement entropies for free 2d CFT’s at finite temperature and finite size, with emphasis on their properties under modular transformations of the torus. We address the issue of summing over fermion spin structures in the replica trick, and show that the relation between entanglement and thermal entropy determines two different ways to perform this sum in the limits of small and large interval. Both answers are modular covariant, rather than invariant. Our results are compared with those for a free boson at unit radius in the two limits and complete agreement is found, supporting the view that entanglement respects Bose-Fermi duality. We extend our computations to multiple free Dirac fermions having correlated spin structures, dual to free bosons on the Spin(2d) weight lattice.