dc.contributor.author |
BANERJEE, DEBARGHA |
en_US |
dc.contributor.author |
MANDAL, TATHAGATA |
en_US |
dc.date.accessioned |
2019-03-26T10:01:40Z |
|
dc.date.available |
2019-03-26T10:01:40Z |
|
dc.date.issued |
2019-08 |
en_US |
dc.identifier.citation |
Journal of Number Theory, 201, 292-321. |
en_US |
dc.identifier.issn |
0022-314X |
en_US |
dc.identifier.issn |
1096-1658 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2408 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jnt.2019.02.017 |
en_US |
dc.description.abstract |
In this paper, we write down the local Brauer classes of the endomorphism algebras of motives attached to non-CM primitive Hecke eigenforms for the supercuspidal prime . The same for odd supercuspidal primes are determined by Bhattacharya-Ghate. We also treat the case of odd unramified supercuspidal primes of level zero also removing a mild hypothesis of them. As an intermediate step, we write down a description of the inertial Galois representation even for generalizing the construction of Ghate-M-zard. Some numerical examples using Sage and LMFDB are provided supporting some of our theorems. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Modular forms |
en_US |
dc.subject |
Galois representations |
en_US |
dc.subject |
Brauer groups |
en_US |
dc.subject |
Local symbols |
en_US |
dc.subject |
TOC-MAR-2019 |
en_US |
dc.subject |
2019 |
en_US |
dc.title |
Supercuspidal ramifications and traces of adjoint lifts |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Number Theory |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |