dc.contributor.author |
BANERJEE, DEBIKA |
en_US |
dc.contributor.author |
Baruch, Ehud Moshe |
en_US |
dc.contributor.author |
Tenetov, Evgeny |
en_US |
dc.date.accessioned |
2019-03-26T10:01:40Z |
|
dc.date.available |
2019-03-26T10:01:40Z |
|
dc.date.issued |
2019-06 |
en_US |
dc.identifier.citation |
Journal of Number Theory, 199, 63-97. |
en_US |
dc.identifier.issn |
0022-314X |
en_US |
dc.identifier.issn |
1096-1658 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2409 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jnt.2018.04.008 |
en_US |
dc.description.abstract |
We obtain a Voronoi-Oppenheim summation formula for divisor functions of totally real number fields. This generalizes a formula proved by Oppenheim in 1927. We use a similar method to the one developed by Beineke and Bump in order to prove the classical Oppenheim summation using a certain Eisenstein series and representation theory. Our formula has a simple formulation for real quadratic number fields. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Voronoi summation |
en_US |
dc.subject |
Bessel functions |
en_US |
dc.subject |
TOC-MAR-2019 |
en_US |
dc.subject |
2019 |
en_US |
dc.title |
A Voronoi-Oppenheim summation formula for totally real number fields |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Number Theory |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |