Abstract:
The extreme properties of neutron stars provide unique opportunities to put constraints on new particles and interactions. In this paper, we point out a few interesting ideas that place constraints on light millicharged fermions, with masses below around an eV, from neutron star astrophysics. The model-independent bounds are obtained leveraging the fact that light millicharged fermions may be pair produced copiously via non-perturbative processes in the extreme electromagnetic environments of a neutron star, like a Magnetar. The limits are derived based on the requirement that conventional Magnetar physics not be catastrophically affected by this non-perturbative production. It will be seen that Magnetar energetics, magnetic field evolution and spin-down rates may all be influenced to various degrees by the presence of the millicharged particles.