Abstract:
CuSe2O5 is a one dimensional antiferromagnetic compound with interesting magnetic interactions at low temperature and has been thoroughly studied in the form of single crystals. However, nanostructures of CuSe2O5 have not been investigated. Here we report the properties of CuSe2O5 nanorods of ∼55 nm diameter and 170 nm length. The composition of the nanorods has been thoroughly investigated using the Energy Dispersive Analysis of X-rays, Inductively Coupled Plasma-Atomic Emission Spectrometry and X-ray Photoelectron Spectroscopy. X-ray diffraction analysis using a synchrotron radiation source shows a reduction in the unit cell volume. Low temperature magnetic measurements from 2 K to 300 K confirm the antiferromagnetic nature of nanorods with no change in the Néel temperature (17 K) compared to the bulk single crystal. However, an enhanced Curie tail in the susceptibility at low temperature indicated the presence of uncompensated spins for nanorods which shift the hump in susceptibility observed at ∼101 K in the single crystal of CuSe2O5 to ∼75 K. In contrast to nanoparticles of many materials, the uncompensated spins in the surface region did not lead to a ferromagnetic shell in the case of the CuSe2O5 nanorods investigated here.