dc.contributor.author |
Afshar, Hamid |
en_US |
dc.contributor.author |
Bergshoeff, Eric A. |
en_US |
dc.contributor.author |
MEHRA, ADITYA |
en_US |
dc.contributor.author |
PAREKH, PULASTYA |
en_US |
dc.contributor.author |
Rollier, Blaise |
en_US |
dc.date.accessioned |
2019-04-29T10:19:32Z |
|
dc.date.available |
2019-04-29T10:19:32Z |
|
dc.date.issued |
2016-04 |
en_US |
dc.identifier.citation |
Journal of High Energy Physics, 2016(145). |
en_US |
dc.identifier.issn |
1126-6708 |
en_US |
dc.identifier.issn |
1029-8479 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2823 |
|
dc.identifier.uri |
https://doi.org/10.1007/JHEP04(2016)145 |
en_US |
dc.description.abstract |
We define a ‘non-relativistic conformal method’, based on a Schrödinger algebra with critical exponent z = 2, as the non-relativistic version of the relativistic conformal method. An important ingredient of this method is the occurrence of a complex compensating scalar field that transforms under both scale and central charge transformations. We apply this non-relativistic method to derive the curved space Newton-Cartan gravity equations of motion with twistless torsion. Moreover, we reproduce z = 2 Hořava-Lifshitz gravity by classifying all possible Schrödinger invariant scalar field theories of a complex scalar up to second order in time derivatives.this non-relativistic method to derive the curved space Newton-Cartan gravity equations of motion with twistless torsion. Moreover, we reproduce z = 2 Ho?ava-Lifshitz gravity by classifying all possible Schr-dinger invariant scalar field theories of a complex scalar up to second order in time derivatives. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Newton-Cartan |
en_US |
dc.subject |
Lifshitz gravities |
en_US |
dc.subject |
Classical Theories |
en_US |
dc.subject |
Gravity Gauge Symmetry |
en_US |
dc.subject |
Relativistic method |
en_US |
dc.subject |
Complex compensating |
en_US |
dc.subject |
2016 |
en_US |
dc.title |
A Schrödinger approach to Newton-Cartan and Hořava-Lifshitz gravities |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Physics |
en_US |
dc.identifier.sourcetitle |
Journal of High Energy Physics |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |