Digital Repository

High-resolution structure of the presynaptic RAD51 filament on single-stranded DNA by electron cryo-microscopy

Show simple item record

dc.contributor.author Short, Judith M. en_US
dc.contributor.author Liu, Yang en_US
dc.contributor.author Chen, Shaoxia en_US
dc.contributor.author Soni, Neelesh en_US
dc.contributor.author MADHUSUDHAN, M. S. en_US
dc.contributor.author Shivji, Mahmud K.K. en_US
dc.contributor.author Venkitaraman, Ashok R. en_US
dc.date.accessioned 2019-04-29T10:20:02Z
dc.date.available 2019-04-29T10:20:02Z
dc.date.issued 2016-09 en_US
dc.identifier.citation Nucleic Acids Research, 44(19), 9017-9030. en_US
dc.identifier.issn 0305-1048 en_US
dc.identifier.issn 1362-4962 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2851
dc.identifier.uri https://doi.org/10.1093/nar/gkw783 en_US
dc.description.abstract Homologous DNA recombination (HR) by the RAD51 recombinase enables error-free DNA break repair. To execute HR, RAD51 first forms a presynaptic filament on single-stranded (ss) DNA, which catalyses pairing with homologous double-stranded (ds) DNA. Here, we report a structure for the presynaptic human RAD51 filament at 3.5–5.0Å resolution using electron cryo-microscopy. RAD51 encases ssDNA in a helical filament of 103Å pitch, comprising 6.4 protomers per turn, with a rise of 16.1Å and a twist of 56.2°. Inter-protomer distance correlates with rotation of an α-helical region in the core catalytic domain that is juxtaposed to ssDNA, suggesting how the RAD51–DNA interaction modulates protomer spacing and filament pitch. We map Fanconi anaemia-like disease-associated RAD51 mutations, clarifying potential phenotypes. We predict binding sites on the presynaptic filament for two modules present in each BRC repeat of the BRCA2 tumour suppressor, a critical HR mediator. Structural modelling suggests that changes in filament pitch mask or expose one binding site with filament-inhibitory potential, rationalizing the paradoxical ability of the BRC repeats to either stabilize or inhibit filament formation at different steps during HR. Collectively, our findings provide fresh insight into the structural mechanism of HR and its dysregulation in human disease. en_US
dc.language.iso en en_US
dc.publisher Oxford University Press en_US
dc.subject High-resolution structure en_US
dc.subject DNA by electron cryo-microscopy en_US
dc.subject Homologous DNA en_US
dc.subject Filament-inhibitory potential en_US
dc.subject Protein expression and purification en_US
dc.subject 2016 en_US
dc.title High-resolution structure of the presynaptic RAD51 filament on single-stranded DNA by electron cryo-microscopy en_US
dc.type Article en_US
dc.contributor.department Dept. of Biology en_US
dc.identifier.sourcetitle Nucleic Acids Research en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account