dc.contributor.author |
CHAUDHURI, CHITRABHANU |
en_US |
dc.date.accessioned |
2019-04-29T10:20:30Z |
|
dc.date.available |
2019-04-29T10:20:30Z |
|
dc.date.issued |
2016-05 |
en_US |
dc.identifier.citation |
Manuscripta mathematica, 150 (12), 137 150. |
en_US |
dc.identifier.issn |
0025-2611 |
en_US |
dc.identifier.issn |
1432-1785 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2863 |
|
dc.identifier.uri |
https://doi.org/10.1007/s00229-015-0807-x |
en_US |
dc.description.abstract |
We determine the action of the product of symmetric groups on the cohomology of certain moduli of weighted pointed rational curves. The moduli spaces that we study are of stable rational curves with m + n marked points where the first m marked points are distinct from all the others where as the last n may coincide among themselves. We give a recipe for calculating the equivariant Poincaré polynomials and list them for small m and n. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Equivariant cohomology |
en_US |
dc.subject |
Certain moduli |
en_US |
dc.subject |
Pointed rational curves |
en_US |
dc.subject |
Primary 14H10 |
en_US |
dc.subject |
Secondary 20C30 |
en_US |
dc.subject |
14D22 |
en_US |
dc.subject |
2016 |
en_US |
dc.title |
Equivariant cohomology of certain moduli of weighted pointed rational curves |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Manuscripta mathematica |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |