dc.contributor.author |
Satin, Seema |
en_US |
dc.contributor.author |
GANGAL, A. D. |
en_US |
dc.date.accessioned |
2019-04-29T10:20:31Z |
|
dc.date.available |
2019-04-29T10:20:31Z |
|
dc.date.issued |
2016-01 |
en_US |
dc.identifier.citation |
Fractals, 24(3), 1650028. |
en_US |
dc.identifier.issn |
0218-348X |
en_US |
dc.identifier.issn |
1793-6543 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2879 |
|
dc.identifier.uri |
https://doi.org/10.1142/S0218348X16500286 |
en_US |
dc.description.abstract |
We analyze random motion of a particle on a fractal curve, using Langevin approach. This involves defining a new velocity in terms of mass of the fractal curve, as defined in recent work. The geometry of the fractal curve, plays an important role in this analysis. A Langevin equation with a particular model of noise is proposed and solved using techniques of the Fα-Calculus. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
World Scientific Publishing |
en_US |
dc.subject |
Langevin Equation |
en_US |
dc.subject |
Fractal Curves |
en_US |
dc.subject |
Fractal Noise |
en_US |
dc.subject |
Geometry of the fractal curve |
en_US |
dc.subject |
2016 |
en_US |
dc.title |
Langevin Equation On Fractal Curves |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Physics |
en_US |
dc.identifier.sourcetitle |
Fractals |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |