Digital Repository

Langevin Equation On Fractal Curves

Show simple item record

dc.contributor.author Satin, Seema en_US
dc.contributor.author GANGAL, A. D. en_US
dc.date.accessioned 2019-04-29T10:20:31Z
dc.date.available 2019-04-29T10:20:31Z
dc.date.issued 2016-01 en_US
dc.identifier.citation Fractals, 24(3), 1650028. en_US
dc.identifier.issn 0218-348X en_US
dc.identifier.issn 1793-6543 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2879
dc.identifier.uri https://doi.org/10.1142/S0218348X16500286 en_US
dc.description.abstract We analyze random motion of a particle on a fractal curve, using Langevin approach. This involves defining a new velocity in terms of mass of the fractal curve, as defined in recent work. The geometry of the fractal curve, plays an important role in this analysis. A Langevin equation with a particular model of noise is proposed and solved using techniques of the Fα-Calculus. en_US
dc.language.iso en en_US
dc.publisher World Scientific Publishing en_US
dc.subject Langevin Equation en_US
dc.subject Fractal Curves en_US
dc.subject Fractal Noise en_US
dc.subject Geometry of the fractal curve en_US
dc.subject 2016 en_US
dc.title Langevin Equation On Fractal Curves en_US
dc.type Article en_US
dc.contributor.department Dept. of Physics en_US
dc.identifier.sourcetitle Fractals en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account