Abstract:
The validity of the fluctuation theorems for total entropy production of a colloidal particle embedded in a non-Markovian heat bath driven by a time-dependent force in a harmonic potential is probed here. The dynamics of the system is modeled by the generalized Langevin equation with colored noise. The distribution function of the total entropy production is calculated and the detailed fluctuation theorem contains a renormalized temperature term which arises due to the non-Markovian characteristics of the thermal bath.