Digital Repository

π-Conjugate Fluorophore-Tagged and Enzyme-Responsive l-Amino Acid Polymer Nanocarrier and Their Color-Tunable Intracellular FRET Probe in Cancer Cells

Show simple item record

dc.contributor.author Saxena, Sonashree en_US
dc.contributor.author JAYAKANNAN, MANICKAM en_US
dc.date.accessioned 2019-07-01T05:34:35Z
dc.date.available 2019-07-01T05:34:35Z
dc.date.issued 2017-08 en_US
dc.identifier.citation Biomacromolecules, 18 (8), 2594-2609. en_US
dc.identifier.issn 1525-7797 en_US
dc.identifier.issn 1526-4602 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3251
dc.identifier.uri https://doi.org/10.1021/acs.biomac.7b00710 en_US
dc.description.abstract The present investigation accounts one of the first example of enzyme-responsive and π-conjugate-tagged l-amino acid amphiphilic polymer and their fluorescence resonance energy transfer (FRET) probes for color-tunable intracellular bioimaging in cancer cells. Melt polymerizable oligo-phenylenevinylene (OPV) π-conjugated diol was tailor-made and subjected to thermo-selective melt transesterification reaction with multifunctional l-aspartic acid monomer to yield OPV-tagged amphiphilic luminescent polyesters. These amphiphilic polyesters self-assembled through strong aromatic π–π stacking and hydrophilic/hydrophobic noncovalent forces into <200 nm size blue-luminescent nanoparticles in aqueous medium. The OPV-tagged polymer nanoparticles served as FRET donor and encapsulated water insoluble Nile Red (NR) fluorophore as a FRET acceptor. Detail photophysical studies revealed that both the OPV and NR were confined within Förster distance in the polymer nanocontainer and the nanodomains provided appropriate geometry for efficient excitation energy transfer from OPV to NR. Cytotoxicity studies in breast cancer (MCF 7), cervical cancer (HeLa) and normal (Wild-type MEF) cell lines revealed that both the nascent luminescent OPV nanoparticles and OPV-NR FRET probes were nontoxic to cells up to 100 μg/mL. Confocal microscope images confirmed the efficient transportation of polymer and FRET probes across the cell membranes and their preferable accumulation in the cytoplasm of the cells. Lysosomal tracker assisted live cell imaging provided direct evidence for the localization of the polymer nanoparticles at the lysosomal compartments in the cytoplasm. In vitro enzyme-responsive studies revealed that the aliphatic polyester backbone in the polymer nanoparticles was readily biodegradable by lysosomal enzymes like esterase, chymotrypsin, trypsin, and also redox GSH species in the cytoplasm. Selective photoexcitation in confocal microscope exhibited bright OPV blue-luminescence and strong red-emission from NR followed by the excitation energy transfer and occurrence of FRET process at the intracellular environment in cancer cell lines. Both the polymer design and the biodegradable polymer FRET concept are completely new; thus, the present approach opens up new platform of research opportunities for natural l-amino acid based luminescent polymer probes for color-tunable bioimaging in cancer cells. en_US
dc.language.iso en en_US
dc.publisher American Chemical Society en_US
dc.subject π-Conjugate Fluorophore-Tagged en_US
dc.subject Enzyme-Responsive en_US
dc.subject Polymer Nanocarrier en_US
dc.subject Color-Tunable en_US
dc.subject FRET Probe en_US
dc.subject Cancer Cells en_US
dc.subject 2017 en_US
dc.title π-Conjugate Fluorophore-Tagged and Enzyme-Responsive l-Amino Acid Polymer Nanocarrier and Their Color-Tunable Intracellular FRET Probe in Cancer Cells en_US
dc.type Article en_US
dc.contributor.department Dept. of Chemistry en_US
dc.identifier.sourcetitle Biomacromolecules en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account