dc.contributor.author |
BALASUBRAMANYAM, BASKAR |
en_US |
dc.date.accessioned |
2019-07-01T05:37:14Z |
|
dc.date.available |
2019-07-01T05:37:14Z |
|
dc.date.issued |
2017-07 |
en_US |
dc.identifier.citation |
Journal of Number Theory, 176, 13-36. |
en_US |
dc.identifier.issn |
0022-314X |
en_US |
dc.identifier.issn |
1096-1658 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3337 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jnt.2016.12.020 |
en_US |
dc.description.abstract |
Let F be a totally real field. Let E be a quadratic extension that is totally imaginary over F. Let π be a cuspidal automorphic representation of cohomological type for over E. The properties of the twisted tensor L-function associated to π are studied in [6]. Special values of such functions are studied in [8] for and [9] for general F. Fix a prime in F. In this article we study special values of the twisted tensor L-function, , that is twisted by Hecke characters χ over F having -power conductor and . Specifically, we construct -adic distributions that interpolate these special values at certain critical points. This is proved under a certain non-vanishing hypothesis at infinity. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Adic distributions |
en_US |
dc.subject |
GL2 |
en_US |
dc.subject |
CM fields |
en_US |
dc.subject |
L-functions |
en_US |
dc.subject |
Automorphic forms for over CM fieldsSpecial values of |
en_US |
dc.subject |
L-functionsTwisted tensor |
en_US |
dc.subject |
L-functionsp-Adic distributions |
en_US |
dc.subject |
2017 |
en_US |
dc.title |
Adic distributions attached to twisted tensor L-functions for GL2 over CM fields |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Number Theory |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |