dc.contributor.author |
BHAKTA, MOUSOMI |
en_US |
dc.contributor.author |
Mukherjee, Debangana |
en_US |
dc.date.accessioned |
2019-07-01T05:37:43Z |
|
dc.date.available |
2019-07-01T05:37:43Z |
|
dc.date.issued |
2017-07 |
en_US |
dc.identifier.citation |
Differential and Integral Equations, 30(5-6),387-422. |
en_US |
dc.identifier.issn |
0893-4983 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3342 |
|
dc.identifier.uri |
- |
en_US |
dc.description.abstract |
In this paper, we prove the existence of infinitely many nontrivial solutions of the following equations driven by a nonlocal integro-differential operator LK with concave-convex nonlinearities and homogeneous Dirichlet boundary conditions LKu+μ|u|q−1u+λ|u|p−1uu=0inΩ,=0inRN∖Ω, where Ω is a smooth bounded domain in RN, N>2s, s∈(0,1), 0<q<1<p≤N+2sN−2s. Moreover, when LK reduces to the fractional laplacian operator −(−Δ)s, p=N+2sN−2s, 12(N+2sN−2s)<q<1, N>6s, λ=1, we find μ∗>0 such that for any μ∈(0,μ∗), there exists at least one sign changing solution. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Khayyam Publishing, Inc. |
en_US |
dc.subject |
35S15 |
en_US |
dc.subject |
Boundary value problems |
en_US |
dc.subject |
Pseudodifferential operators 35J20 |
en_US |
dc.subject |
Variational methods for second-order elliptic equations 49J35 |
en_US |
dc.subject |
Minimax problems 47G20 |
en_US |
dc.subject |
Integro-differential operators |
en_US |
dc.subject |
2017 |
en_US |
dc.title |
Multiplicity results and sign changing solutions of non-local equations with concave-convex nonlinearities |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Differential and Integral Equations |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |