dc.contributor.author |
BHAKTA, MOUSOMI |
en_US |
dc.contributor.author |
Santra, Sanjiban |
en_US |
dc.date.accessioned |
2019-07-01T05:37:43Z |
|
dc.date.available |
2019-07-01T05:37:43Z |
|
dc.date.issued |
2017-09 |
en_US |
dc.identifier.citation |
Journal of Differential Equations, 263(5), 2886-2953. |
en_US |
dc.identifier.issn |
0022-0396 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3343 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jde.2017.04.018 |
en_US |
dc.description.abstract |
We study the problem (𝐼𝜀)β{:βΈ where 𝑞>𝑝β₯2ββ1, 𝜀>0, Ξ©ββ𝑁 is a bounded domain with smooth boundary, 0βΞ©, 𝑁β₯3 and 0<𝜇<𝜇Β―:=(𝑁β22)2. We completely classify the singularity of solution at 0 in the supercritical case. Using the transformation 𝑣=|𝑥|𝜈𝑢, we reduce the problem (𝐼𝜀) to (𝐽𝜀) (𝐽𝜀)β§β©β¨βͺβͺβ𝑑𝑖𝑣(|𝑥|β2𝜈β𝑣)𝑣𝑣=|𝑥|β(𝑝+1)𝜈𝑣𝑝β𝜀|𝑥|β(𝑞+1)𝜈𝑣𝑞in Ξ©,>0in Ξ©,β𝐻10(Ξ©,|𝑥|β2𝜈)β©𝐿𝑞+1(Ξ©,|𝑥|β(𝑞+1)𝜈), and then formulating a variational problem for (𝐽𝜀), we establish the existence of a variational solution 𝑣𝜀 and characterize the asymptotic behavior of 𝑣𝜀 as 𝜀β0 by variational arguments when 𝑝=2ββ1. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
On singular |
en_US |
dc.subject |
Supercritical exponents |
en_US |
dc.subject |
Critical |
en_US |
dc.subject |
Super-critical exponent |
en_US |
dc.subject |
Local estimates |
en_US |
dc.subject |
Asymptotic behavior |
en_US |
dc.subject |
Entire solution |
en_US |
dc.subject |
Large solutions |
en_US |
dc.subject |
2017 |
en_US |
dc.title |
On singular equations with critical and supercritical exponents |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Differential Equations |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |