dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.date.accessioned |
2019-07-01T05:37:43Z |
|
dc.date.available |
2019-07-01T05:37:43Z |
|
dc.date.issued |
2017-12 |
en_US |
dc.identifier.citation |
Mathematical Physics, Analysis and Geometry, 20(25). |
en_US |
dc.identifier.issn |
1385-0172 |
en_US |
dc.identifier.issn |
1572-9656 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3345 |
|
dc.identifier.uri |
https://doi.org/10.1007/s11040-017-9256-y |
en_US |
dc.description.abstract |
Eigenfunctions of the fractional Schrödinger operators in a domain D are considered, and a relation between the supremum of the potential and the distance of a maximizer of the eigenfunction from ∂ D is established. This, in particular, extends a recent result of Rachh and Steinerberger arXiv:1608.06604 (2017) to the fractional Schrödinger operators. We also propose a fractional version of the Barta’s inequality and also generalize a celebrated Lieb’s theorem for fractional Schrödinger operators. As applications of above results we obtain a Faber-Krahn inequality for non-local Schrödinger operators. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Principal eigenvalue |
en_US |
dc.subject |
Nodal domain |
en_US |
dc.subject |
Fractional Laplacian |
en_US |
dc.subject |
Barta's inequality |
en_US |
dc.subject |
Ground state |
en_US |
dc.subject |
Fractional Faber-Krahn |
en_US |
dc.subject |
Obstacle problems |
en_US |
dc.subject |
2017 |
en_US |
dc.title |
Location of Maximizers of Eigenfunctions of Fractional Schrödinger’s Equations |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Mathematical Physics, Analysis and Geometry |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |