Digital Repository

Location of Maximizers of Eigenfunctions of Fractional Schrödinger’s Equations

Show simple item record

dc.contributor.author BISWAS, ANUP en_US
dc.date.accessioned 2019-07-01T05:37:43Z
dc.date.available 2019-07-01T05:37:43Z
dc.date.issued 2017-12 en_US
dc.identifier.citation Mathematical Physics, Analysis and Geometry, 20(25). en_US
dc.identifier.issn 1385-0172 en_US
dc.identifier.issn 1572-9656 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3345
dc.identifier.uri https://doi.org/10.1007/s11040-017-9256-y en_US
dc.description.abstract Eigenfunctions of the fractional Schrödinger operators in a domain D are considered, and a relation between the supremum of the potential and the distance of a maximizer of the eigenfunction from ∂ D is established. This, in particular, extends a recent result of Rachh and Steinerberger arXiv:1608.06604 (2017) to the fractional Schrödinger operators. We also propose a fractional version of the Barta’s inequality and also generalize a celebrated Lieb’s theorem for fractional Schrödinger operators. As applications of above results we obtain a Faber-Krahn inequality for non-local Schrödinger operators. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Principal eigenvalue en_US
dc.subject Nodal domain en_US
dc.subject Fractional Laplacian en_US
dc.subject Barta's inequality en_US
dc.subject Ground state en_US
dc.subject Fractional Faber-Krahn en_US
dc.subject Obstacle problems en_US
dc.subject 2017 en_US
dc.title Location of Maximizers of Eigenfunctions of Fractional Schrödinger’s Equations en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Mathematical Physics, Analysis and Geometry en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account