dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.contributor.author |
Ishii, Hitoshi |
en_US |
dc.contributor.author |
Saha, Subhamay |
en_US |
dc.contributor.author |
Wang, Lin |
en_US |
dc.date.accessioned |
2019-07-01T05:37:43Z |
|
dc.date.available |
2019-07-01T05:37:43Z |
|
dc.date.issued |
2017-02 |
en_US |
dc.identifier.citation |
SIAM Journal on Control and Optimization, 55(1), 365-396. |
en_US |
dc.identifier.issn |
0363-0129 |
en_US |
dc.identifier.issn |
1095-7138 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3346 |
|
dc.identifier.uri |
https://doi.org/10.1137/15M103830X |
en_US |
dc.description.abstract |
Motivated by a control problem of a certain queueing network we consider a control problem where the dynamics is constrained in the nonnegative orthant $\mathbb{R}^{d}_{+}$ of the $d$-dimensional Euclidean space and controlled by the reflections at the faces/boundaries. We define a discounted value function associated to this problem and show that the value function is a viscosity solution to a certain HJB equation in $\mathbb{R}^{d}_{+}$ with nonlinear Neumann type boundary condition. Under certain conditions, we also characterize this value function as the unique solution to this HJB equation. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Society for Industrial and Applied Mathematics |
en_US |
dc.subject |
Skorokhod map with reflection control |
en_US |
dc.subject |
queues with help |
en_US |
dc.subject |
viscosity solutions |
en_US |
dc.subject |
nonlinear Neumann boundary |
en_US |
dc.subject |
Nonsmooth domain |
en_US |
dc.subject |
heavy-traffic |
en_US |
dc.subject |
stochastic network |
en_US |
dc.subject |
2017 |
en_US |
dc.title |
On Viscosity Solution of HJB Equations with State Constraints and Reflection Control |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
SIAM Journal on Control and Optimization |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |