dc.contributor.author |
Beelen, Peter |
en_US |
dc.contributor.author |
Glynn, David |
en_US |
dc.contributor.author |
Hoholdt, Tom |
en_US |
dc.contributor.author |
KAIPA, KRISHNA |
en_US |
dc.date.accessioned |
2019-07-01T05:37:43Z |
|
dc.date.available |
2019-07-01T05:37:43Z |
|
dc.date.issued |
2017-11 |
en_US |
dc.identifier.citation |
Advances in Mathematics of Communications, 11(4), 777-790. |
en_US |
dc.identifier.issn |
1930-5346 |
en_US |
dc.identifier.issn |
1930-5338 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3353 |
|
dc.identifier.uri |
https://doi.org/10.3934/amc.2017057 |
en_US |
dc.description.abstract |
In this article we count the number of [n,k][n,k] generalized Reed-Solomon (GRS) codes, including the codes coming from a non-degenerate conic plus nucleus. We compare our results with known formulae for the number of [n,3][n,3] MDS codes with n=6,7,8,9n=6,7,8,9. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
American Institute of Mathematical Sciences |
en_US |
dc.subject |
Generalized Reed-Solomon codes |
en_US |
dc.subject |
MDS codes |
en_US |
dc.subject |
n-arcs |
en_US |
dc.subject |
Counting generalized |
en_US |
dc.subject |
2017 |
en_US |
dc.title |
Counting generalized Reed-Solomon codes |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Advances in Mathematics of Communications |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |