Digital Repository

Density of solutions to quadratic congruences

Show simple item record

dc.contributor.author PRABHU, NEHA en_US
dc.date.accessioned 2019-07-01T05:37:44Z
dc.date.available 2019-07-01T05:37:44Z
dc.date.issued 2017-06 en_US
dc.identifier.citation Czechoslovak Mathematical Journal, 67(2), 439-455. en_US
dc.identifier.issn 0011-4642 en_US
dc.identifier.issn 1572-9141 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3360
dc.identifier.uri https://doi.org/10.21136/CMJ.2017.0712-15 en_US
dc.description.abstract A classical result in number theory is Dirichlet's theorem on the density of primes in an arithmetic progression. We prove a similar result for numbers with exactly k prime factors for k > 1. Building upon a proof by E.M. Wright in 1954, we compute the natural density of such numbers where each prime satisfies a congruence condition. As an application, we obtain the density of squarefree n <= x with k prime factors such that a fixed quadratic equation has exactly 2 k solutions modulo n. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Dirichlet's theorem en_US
dc.subject Asymptotic density en_US
dc.subject Primes in arithmetic en_US
dc.subject Progression squarefree number en_US
dc.subject 2017 en_US
dc.title Density of solutions to quadratic congruences en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Czechoslovak Mathematical Journal en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account