dc.contributor.author |
PRABHU, NEHA |
en_US |
dc.date.accessioned |
2019-07-01T05:37:44Z |
|
dc.date.available |
2019-07-01T05:37:44Z |
|
dc.date.issued |
2017-06 |
en_US |
dc.identifier.citation |
Czechoslovak Mathematical Journal, 67(2), 439-455. |
en_US |
dc.identifier.issn |
0011-4642 |
en_US |
dc.identifier.issn |
1572-9141 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3360 |
|
dc.identifier.uri |
https://doi.org/10.21136/CMJ.2017.0712-15 |
en_US |
dc.description.abstract |
A classical result in number theory is Dirichlet's theorem on the density of primes in an arithmetic progression. We prove a similar result for numbers with exactly k prime factors for k > 1. Building upon a proof by E.M. Wright in 1954, we compute the natural density of such numbers where each prime satisfies a congruence condition. As an application, we obtain the density of squarefree n <= x with k prime factors such that a fixed quadratic equation has exactly 2 k solutions modulo n. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Dirichlet's theorem |
en_US |
dc.subject |
Asymptotic density |
en_US |
dc.subject |
Primes in arithmetic |
en_US |
dc.subject |
Progression squarefree number |
en_US |
dc.subject |
2017 |
en_US |
dc.title |
Density of solutions to quadratic congruences |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Czechoslovak Mathematical Journal |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |