Abstract:
Earth-abundant quaternary chalcogenides are promising candidate materials for thin-film solar cells. Here we have synthesized Cu2NiSnS4 nanocrystals and thin films in a novel zincblende type cubic phase using a facile hot-injection method. The structural, electronic, and optical properties are studied using various experimental techniques, and the results are further corroborated within first-principles density functional theory based calculations. The estimated direct band gap ∼ 1.57 eV and high optical absorption coefficient ∼ 106 cm–1 indicate potential application in a low-cost thin-film solar cell. Further, the alignments for both conduction and valence bands are directly measured through cyclic voltametry. The 1.47 eV electrochemical gap and very small conduction band offset of −0.12 eV measured at the CNTS/CdS heterojunction are encouraging factors for the device. These results enable us to model carrier transport across the heterostructure interface. Finally, we have fabricated a CNTS solar cell device for the first time, with high open circuit voltage and fill factor. The results presented here should attract further studies.