Digital Repository

Generation of dark solitons and their instability dynamics in two-dimensional condensates

Show simple item record

dc.contributor.author VERMA, GUNJAN en_US
dc.contributor.author RAPOL, UMAKANT D. en_US
dc.contributor.author NATH, REJISH en_US
dc.date.accessioned 2019-07-01T05:55:26Z
dc.date.available 2019-07-01T05:55:26Z
dc.date.issued 2017-04 en_US
dc.identifier.citation Physical Review A, 95(4), 043618. en_US
dc.identifier.issn 2469-9926 en_US
dc.identifier.issn 2469-9934 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3529
dc.identifier.uri https://doi.org/10.1103/PhysRevA.95.043618 en_US
dc.description.abstract We analyze numerically the formation and the subsequent dynamics of two-dimensional matter wave dark solitons in a Thomas-Fermi rubidium condensate using various techniques. An initially imprinted sharp phase gradient leads to the dynamical formation of a stationary soliton as well as very shallow gray solitons, whereas a smooth gradient only creates gray solitons. The depth and hence, the velocity of the soliton is provided by the spatial width of the phase gradient, and it also strongly influences the snake-instability dynamics of the two-dimensional solitons. The vortex dipoles stemming from the unstable soliton exhibit rich dynamics. Notably, the annihilation of a vortex dipole via a transient dark lump or a vortexonium state, the exchange of vortices between either a pair of vortex dipoles or a vortex dipole and a single vortex, and so on. For sufficiently large width of the initial phase gradient, the solitons may decay directly into vortexoniums instead of vortex pairs, and also the decay rate is augmented. Later, we discuss alternative techniques to generate dark solitons, which involve a Gaussian potential barrier and time-dependent interactions, both linear and periodic. The properties of the solitons can be controlled by tuning the amplitude or the width of the potential barrier. In the linear case, the number of solitons and their depths are determined by the quench time of the interactions. For the periodic modulation, a transient soliton lattice emerges with its periodicity depending on the modulation frequency, through a wave number selection governed by the local Bogoliubov spectrum. Interestingly, for sufficiently low barrier potential, both Faraday pattern and soliton lattice coexist. The snake instability dynamics of the soliton lattice is characteristically modified if the Faraday pattern is present. en_US
dc.language.iso en en_US
dc.publisher American Physical Society en_US
dc.subject Dark solitons en_US
dc.subject Instability dynamics en_US
dc.subject Dimensional condensates en_US
dc.subject Faraday pattern en_US
dc.subject Nonlinear waves en_US
dc.subject Quantum fluids en_US
dc.subject Solids Solitons en_US
dc.subject 2017 en_US
dc.title Generation of dark solitons and their instability dynamics in two-dimensional condensates en_US
dc.type Article en_US
dc.contributor.department Dept. of Physics en_US
dc.identifier.sourcetitle Physical Review A en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account