Abstract:
The low-energy physics of graphene is described by relativistic Dirac fermions with spin and valley degrees of freedom. Mechanical strain can be used to create a pseudomagnetic field pointing to opposite directions in the two valleys. We study interacting electrons in graphene exposed to both an external real magnetic field and a strain-induced pseudomagnetic field. For a certain ratio between these two fields, it is proposed that a fermionic symmetry-protected topological state can be realized. The state is characterized in detail using model wave functions, Chern-Simons field theory, and numerical calculations. Our paper suggests that graphene with artificial gauge fields may host a rich set of topological states.