dc.contributor.author |
KHARE, AVINASH |
en_US |
dc.contributor.author |
Saxena, Avadh |
en_US |
dc.contributor.author |
Khare, Apoorva |
en_US |
dc.date.accessioned |
2019-07-23T11:10:52Z |
|
dc.date.available |
2019-07-23T11:10:52Z |
|
dc.date.issued |
2012-08 |
en_US |
dc.identifier.citation |
Pramana, 78(3), 377-392. |
en_US |
dc.identifier.issn |
0304-4289 |
en_US |
dc.identifier.issn |
0973-7111 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3691 |
|
dc.identifier.uri |
https://doi.org/10.1007/s12043-012-0327-0 |
en_US |
dc.description.abstract |
Coupled discrete models are ubiquitous in a variety of physical contexts. We provide an extensive set of exact quasiperiodic solutions of a number of coupled discrete models in terms of Lamé polynomials of arbitrary order. The models discussed are: (i) coupled Salerno model, (ii) coupled Ablowitz–Ladik model, (iii) coupled ϕ 4 model and (iv) coupled ϕ 6 model. In all these cases we show that the coefficients of the Lamé polynomials are such that the Lamé polynomials can be re-expressed in terms of Chebyshev polynomials of the relevant Jacobi elliptic function. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Discrete models |
en_US |
dc.subject |
Lame polynomials |
en_US |
dc.subject |
Arbitrary order |
en_US |
dc.subject |
Jacobi elliptic functions |
en_US |
dc.subject |
Field theories phase transitions |
en_US |
dc.subject |
2012 |
en_US |
dc.title |
Solutions of several coupled discrete models in terms of Lamé polynomials of arbitrary order |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Physics |
en_US |
dc.identifier.sourcetitle |
Pramana |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |