dc.contributor.author |
Jenkins, Adrian |
en_US |
dc.contributor.author |
SPALLONE, STEVEN |
en_US |
dc.date.accessioned |
2019-07-23T11:14:13Z |
|
dc.date.available |
2019-07-23T11:14:13Z |
|
dc.date.issued |
2012-04 |
en_US |
dc.identifier.citation |
International Journal of Mathematics, 23, (06), 1250059. |
en_US |
dc.identifier.issn |
0129-167X |
en_US |
dc.identifier.issn |
1793-6519 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3726 |
|
dc.identifier.uri |
https://doi.org/10.1142/S0129167X12500590 |
en_US |
dc.description.abstract |
In this note, we consider locally invertible analytic mappings of a two-dimensional space over a non-archimedean field. Such a map is called semi-hyperbolic if its Jacobian has eigenvalues λ1 and λ2 so that λ1 = 1 and |λ2| ≠ 1. We prove that two analytic semi-hyperbolic maps are analytically equivalent if and only if they are formally equivalent, applying a generalized version of an estimation scheme from our earlier work |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
World Scientific Publishing |
en_US |
dc.subject |
Conjugacy normal form |
en_US |
dc.subject |
non-archimedean |
en_US |
dc.subject |
p-adic |
en_US |
dc.subject |
formal |
en_US |
dc.subject |
analytic |
en_US |
dc.subject |
holomorphic |
en_US |
dc.subject |
2012 |
en_US |
dc.title |
Local analytic conjugacy of semi-hyperbolic mappings in two variables, in the non-archimedean setting |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
International Journal of Mathematics |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |