dc.contributor.author |
CHORWADWALA, ANISA M. H. |
en_US |
dc.contributor.author |
M. K. Vemuri |
en_US |
dc.date.accessioned |
2019-07-23T11:33:27Z |
|
dc.date.available |
2019-07-23T11:33:27Z |
|
dc.date.issued |
2012-11 |
en_US |
dc.identifier.citation |
Geometriae Dedicata, 167(1), 11-21. |
en_US |
dc.identifier.issn |
0046-5755 |
en_US |
dc.identifier.issn |
1572-9168 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3733 |
|
dc.identifier.uri |
https://doi.org/10.1007/s10711-012-9800-7 |
en_US |
dc.description.abstract |
Let B 1 be a ball in a non-compact rank-one symmetric space and let B 0 be a smaller ball inside it. It is shown that if y is the solution of the problem −Δu = 1 in B1∖B0¯ vanishing on the boundary, then the Dirichlet-energy of y is minimal if and only if the balls are concentric. It is also shown that the first Dirichlet eigenvalue of the Laplacian on B1∖B0¯ is maximal if and only if the two balls are concentric. The formalism of Damek-Ricci harmonic spaces is used. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Shape optimization problem |
en_US |
dc.subject |
Rank one symmetric spaces of non-compact type |
en_US |
dc.subject |
Dirichlet boundary value problem |
en_US |
dc.subject |
Damek-Ricci harmonic |
en_US |
dc.subject |
2012 |
en_US |
dc.title |
Two functionals connected to the Laplacian in a class of doubly connected domains on rank one symmetric spaces of non-compact type |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Geometriae Dedicata |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |