Digital Repository

Two functionals connected to the Laplacian in a class of doubly connected domains on rank one symmetric spaces of non-compact type

Show simple item record

dc.contributor.author CHORWADWALA, ANISA M. H. en_US
dc.contributor.author M. K. Vemuri en_US
dc.date.accessioned 2019-07-23T11:33:27Z
dc.date.available 2019-07-23T11:33:27Z
dc.date.issued 2012-11 en_US
dc.identifier.citation Geometriae Dedicata, 167(1), 11-21. en_US
dc.identifier.issn 0046-5755 en_US
dc.identifier.issn 1572-9168 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3733
dc.identifier.uri https://doi.org/10.1007/s10711-012-9800-7 en_US
dc.description.abstract Let B 1 be a ball in a non-compact rank-one symmetric space and let B 0 be a smaller ball inside it. It is shown that if y is the solution of the problem −Δu = 1 in B1∖B0¯ vanishing on the boundary, then the Dirichlet-energy of y is minimal if and only if the balls are concentric. It is also shown that the first Dirichlet eigenvalue of the Laplacian on B1∖B0¯ is maximal if and only if the two balls are concentric. The formalism of Damek-Ricci harmonic spaces is used. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Shape optimization problem en_US
dc.subject Rank one symmetric spaces of non-compact type en_US
dc.subject Dirichlet boundary value problem en_US
dc.subject Damek-Ricci harmonic en_US
dc.subject 2012 en_US
dc.title Two functionals connected to the Laplacian in a class of doubly connected domains on rank one symmetric spaces of non-compact type en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Geometriae Dedicata en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account