dc.contributor.author |
BHAGWAT, PANKAJ |
en_US |
dc.contributor.author |
Marchand, Eric |
en_US |
dc.date.accessioned |
2019-07-24T07:05:52Z |
|
dc.date.available |
2019-07-24T07:05:52Z |
|
dc.date.issued |
2019-05 |
en_US |
dc.identifier.citation |
American Statistician. |
en_US |
dc.identifier.issn |
0003-1305 |
en_US |
dc.identifier.issn |
1537-2731 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3770 |
|
dc.identifier.uri |
https://doi.org/10.1080/00031305.2019.1604432 |
en_US |
dc.description.abstract |
We present an example of a proper Bayes point estimator which is inadmissible. It occurs for a negative binomial model with shape parameter a, probability parameter p, prior densities of the form π(a,p) = β g(a) (1−p)β−1, and for estimating the population mean μ=a(1−p)/p under squared error loss. Other intriguing features are exhibited such as the constancy of the Bayes estimator with respect to the choice of g, including degenerate or known a cases. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Taylor & Francis |
en_US |
dc.subject |
Bayes estimator |
en_US |
dc.subject |
Inadmissibility |
en_US |
dc.subject |
Negative binomial |
en_US |
dc.subject |
TOC-JUL-2019 |
en_US |
dc.subject |
2019 |
en_US |
dc.title |
On a Proper Bayes, but Inadmissible Estimator |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
American Statistician. |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |