dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.contributor.author |
Lorinczi, Jozsef |
en_US |
dc.date.accessioned |
2019-07-24T07:05:53Z |
|
dc.date.available |
2019-07-24T07:05:53Z |
|
dc.date.issued |
2019-05 |
en_US |
dc.identifier.citation |
SIAM Journal on Mathematical Analysis, 51(3), 1543-1581. |
en_US |
dc.identifier.issn |
0036-1410 |
en_US |
dc.identifier.issn |
1095-7154 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3783 |
|
dc.identifier.uri |
https://doi.org/10.1137/18M1171722 |
en_US |
dc.description.abstract |
We consider Dirichlet exterior value problems related to a class of nonlocal Schrödinger operators, whose kinetic terms are given in terms of Bernstein functions of the Laplacian. We prove elliptic and parabolic Aleksandrov--Bakelman--Pucci (ABP) type estimates and as an application obtain existence and uniqueness of weak solutions. Next we prove a refined maximum principle in the sense of Berestycki--Nirenberg--Varadhan and a converse. Also, we prove a weak antimaximum principle in the sense of Clément--Peletier, valid on compact subsets of the domain, and a full antimaximum principle by restricting to fractional Schrödinger operators. Furthermore, we show a maximum principle for narrow domains and a refined elliptic ABP-type estimate. Finally, we obtain Liouville-type theorems for harmonic solutions and for a class of semilinear equations. Our approach is probabilistic, making use of the properties of subordinate Brownian motion. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Society for Industrial and Applied Mathematics |
en_US |
dc.subject |
Nonlocal schrodinger operator |
en_US |
dc.subject |
Dirichlet exterior condition problem |
en_US |
dc.subject |
Refined maximum principle |
en_US |
dc.subject |
Antimaximum principle |
en_US |
dc.subject |
Aleksandrov |
en_US |
dc.subject |
Bakelman |
en_US |
dc.subject |
Pucci estimate |
en_US |
dc.subject |
Liouville theorem |
en_US |
dc.subject |
Bernstein function |
en_US |
dc.subject |
Subordinate Brownian motion |
en_US |
dc.subject |
Principal eigenvalue and eigenfunction |
en_US |
dc.subject |
TOC-JUL-2019 |
en_US |
dc.subject |
2019 |
en_US |
dc.title |
Maximum Principles and Aleksandrov-Bakelman-Pucci Type Estimates for Nonlocal Schro Odinger Equations with Exterior Conditions |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
SIAM Journal on Mathematical Analysis |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |