Digital Repository

Maximum Principles and Aleksandrov-Bakelman-Pucci Type Estimates for Nonlocal Schro Odinger Equations with Exterior Conditions

Show simple item record

dc.contributor.author BISWAS, ANUP en_US
dc.contributor.author Lorinczi, Jozsef en_US
dc.date.accessioned 2019-07-24T07:05:53Z
dc.date.available 2019-07-24T07:05:53Z
dc.date.issued 2019-05 en_US
dc.identifier.citation SIAM Journal on Mathematical Analysis, 51(3), 1543-1581. en_US
dc.identifier.issn 0036-1410 en_US
dc.identifier.issn 1095-7154 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3783
dc.identifier.uri https://doi.org/10.1137/18M1171722 en_US
dc.description.abstract We consider Dirichlet exterior value problems related to a class of nonlocal Schrödinger operators, whose kinetic terms are given in terms of Bernstein functions of the Laplacian. We prove elliptic and parabolic Aleksandrov--Bakelman--Pucci (ABP) type estimates and as an application obtain existence and uniqueness of weak solutions. Next we prove a refined maximum principle in the sense of Berestycki--Nirenberg--Varadhan and a converse. Also, we prove a weak antimaximum principle in the sense of Clément--Peletier, valid on compact subsets of the domain, and a full antimaximum principle by restricting to fractional Schrödinger operators. Furthermore, we show a maximum principle for narrow domains and a refined elliptic ABP-type estimate. Finally, we obtain Liouville-type theorems for harmonic solutions and for a class of semilinear equations. Our approach is probabilistic, making use of the properties of subordinate Brownian motion. en_US
dc.language.iso en en_US
dc.publisher Society for Industrial and Applied Mathematics en_US
dc.subject Nonlocal schrodinger operator en_US
dc.subject Dirichlet exterior condition problem en_US
dc.subject Refined maximum principle en_US
dc.subject Antimaximum principle en_US
dc.subject Aleksandrov en_US
dc.subject Bakelman en_US
dc.subject Pucci estimate en_US
dc.subject Liouville theorem en_US
dc.subject Bernstein function en_US
dc.subject Subordinate Brownian motion en_US
dc.subject Principal eigenvalue and eigenfunction en_US
dc.subject TOC-JUL-2019 en_US
dc.subject 2019 en_US
dc.title Maximum Principles and Aleksandrov-Bakelman-Pucci Type Estimates for Nonlocal Schro Odinger Equations with Exterior Conditions en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle SIAM Journal on Mathematical Analysis en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account