Digital Repository

Remarks on the Higher Dimensional Suita Conjecture

Show simple item record

dc.contributor.author Balakumar, G. P. en_US
dc.contributor.author BORAH, DIGANTA en_US
dc.contributor.author Mahajan, Prachi en_US
dc.contributor.author Verma, Kaushal en_US
dc.date.accessioned 2019-08-26T06:53:37Z
dc.date.available 2019-08-26T06:53:37Z
dc.date.issued 2019-08 en_US
dc.identifier.citation Proceedings of the American Mathematical Society, 147(8), 3401-3411. en_US
dc.identifier.issn 0002-9939 en_US
dc.identifier.issn 1088-6826 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3814
dc.identifier.uri https://doi.org/10.1090/proc/14421 en_US
dc.description.abstract To study the analog of Suita's conjecture for domains D subset of C-n, n >= 2, Blocki introduced the invariant F-D(k) (z) = K-D(z)lambda(I-D(k) (z)), where K-D(z) is the Bergman kernel of D along the diagonal and lambda(I-D(k) (z)) is the Lebesgue measure of the Kobayashi indicatrix at the point z. In this note, we study the behaviour of F-D(k) (z) (and other similar invariants using different metrics) on strongly pseudconvex domains and also compute its limiting behaviour explicitly at certain points of decoupled egg domains in C-2. en_US
dc.language.iso en en_US
dc.publisher American Mathematical Society en_US
dc.subject Suita conjecture en_US
dc.subject Bergman kernel en_US
dc.subject Kobayashi indicatrix en_US
dc.subject TOC-AUG-2019 en_US
dc.subject 2019 en_US
dc.title Remarks on the Higher Dimensional Suita Conjecture en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Proceedings of the American Mathematical Society en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account