dc.contributor.author |
Balakumar, G. P. |
en_US |
dc.contributor.author |
BORAH, DIGANTA |
en_US |
dc.contributor.author |
Mahajan, Prachi |
en_US |
dc.contributor.author |
Verma, Kaushal |
en_US |
dc.date.accessioned |
2019-08-26T06:53:37Z |
|
dc.date.available |
2019-08-26T06:53:37Z |
|
dc.date.issued |
2019-08 |
en_US |
dc.identifier.citation |
Proceedings of the American Mathematical Society, 147(8), 3401-3411. |
en_US |
dc.identifier.issn |
0002-9939 |
en_US |
dc.identifier.issn |
1088-6826 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3814 |
|
dc.identifier.uri |
https://doi.org/10.1090/proc/14421 |
en_US |
dc.description.abstract |
To study the analog of Suita's conjecture for domains D subset of C-n, n >= 2, Blocki introduced the invariant F-D(k) (z) = K-D(z)lambda(I-D(k) (z)), where K-D(z) is the Bergman kernel of D along the diagonal and lambda(I-D(k) (z)) is the Lebesgue measure of the Kobayashi indicatrix at the point z. In this note, we study the behaviour of F-D(k) (z) (and other similar invariants using different metrics) on strongly pseudconvex domains and also compute its limiting behaviour explicitly at certain points of decoupled egg domains in C-2. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
American Mathematical Society |
en_US |
dc.subject |
Suita conjecture |
en_US |
dc.subject |
Bergman kernel |
en_US |
dc.subject |
Kobayashi indicatrix |
en_US |
dc.subject |
TOC-AUG-2019 |
en_US |
dc.subject |
2019 |
en_US |
dc.title |
Remarks on the Higher Dimensional Suita Conjecture |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Proceedings of the American Mathematical Society |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |