dc.contributor.author |
Aryasomayajula, Anilatmaja |
en_US |
dc.contributor.author |
BALASUBRAMANYAM, BASKAR |
en_US |
dc.date.accessioned |
2019-09-09T11:25:51Z |
|
dc.date.available |
2019-09-09T11:25:51Z |
|
dc.date.issued |
2018-05 |
en_US |
dc.identifier.citation |
International Journal of Number Theory, 14 (04), 1143-1170. |
en_US |
dc.identifier.issn |
1793-0421 |
en_US |
dc.identifier.issn |
1793-7310 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3854 |
|
dc.identifier.uri |
https://doi.org/10.1142/S1793042118500719 |
en_US |
dc.description.abstract |
In this paper, using methods from geometric analysis and theory of heat kernels, we derive qualitative estimates of automorphic cusp forms defined over quaternion algebras. Using which, we prove an average version of the holomorphic QUE conjecture. We then derive quantitative estimates of classical Hilbert modular cusp forms. This is a generalization of the results from [A. Aryasomayajula, Heat kernel approach for sup-norm bounds for cusp forms of integral and half-integral weight, Arch. Math.106(2) (2016) 165-173; J. S. Friedman, J. Jorgenson and J. Kramer, Uniform sup-norm bounds on average for cusp forms of higher weights, in Arbeitstagung Bonn 2013, Progress in Mathematics, Vol. 319 (Birkh-user/Springer, Cham, 2016), pp. 127-154] to higher dimensions. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
World Scientific Publishing |
en_US |
dc.subject |
Automorphic forms |
en_US |
dc.subject |
Hilbert modular forms |
en_US |
dc.subject |
Quaternion algebras |
en_US |
dc.subject |
Bergman kernels |
en_US |
dc.subject |
2018 |
en_US |
dc.title |
Estimates of automorphic cusp forms over quaternion algebras |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
International Journal of Number Theory |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |